mine the user's positional coordinates in real-time, or a PCM CIA Type II or Type III modem interface which can be miniaturized to credit card size. Alternatively, the user can specify his position coordinates and transmit that information to the database 12e. In this illustrated embodiment, the 5 system 118 continually redefines the geo-definition of the geographic vicinity based upon the positional coordinates of the user. Data is assembled and maintained using the positional coordinates to generate a map of the geographic vicinity relative to the user and including the locations of the 10 items of interest. As above, this geographic vicinity is assumed to be within a walking distance of the user; however, the user can select a greater radius for display, or another destination location, as needed.

The invention generally incorporates software to facilitate 15 the several embodiments described herein and to support the principles of the invention. As known to those in the art, the data within the database can be maintained, for example, on a SQL-server, or in xBASE. The software is preferably portable to other operating systems, such as to Apple, 20 Apple/IBM, Unix, DEC, OS/2, DOS, Windows 3.1, Windows '95; and preferably allows scalability to 64-bit architectures and greater, as technology advances.

In accord with the invention, software code supporting the database interaction with the remote port can include object- 25 oriented programming, Visual Basic, and other software architectures configured to allow user interaction, portability to other platforms, interface with the internet or other gateways, and relational management.

FIG. 9 illustrates one embodiment of database architecture 130 which is suitable for use as the database 12 of FIG. 1. Specifically, the architecture 130 includes separate phone and fax interfaces, 131, 132, respectively, to interface with any one of the remote ports, e.g., the port 16 of FIG. 1. FIG. 10 illustrates system architecture including database architecture 140 and remote port architecture 141 connected via a pair of phone lines 142, 143 to, respectively, a touch-tone phone 142a and fax machine 143a. In this manner, a user 144 can make requests and listen to responses on the phone 142a, and receive maps and instructions via the fax machine

Other modules within the database architectures 130 and/or 140 include the following:

respectively) handle all data transfers for a single internal modem (or telephone interface controller) 131 in the host database, e.g., a personal computer. It responds to remote requests for data by passing the requests to a session manager 138, and handles all 50 modem control issues, such as answering incoming calls. The communications manager 133' of FIG. 10 is configured to service users who access the database from a remote port comprising a dial-up telephone 142a. As such, the manager 133' translates touch-tone 55 inputs into data and fax transmission requests to be sent to the session manager 138, and monitors the line 142 for time-outs when a user 144 forgets to actively disconnect. The manager 133' can also translate data from the session manager 138 into synthesized voice 60 output for presentation to an end user 144.

The fax manager 134 handles all requests from the session manager 138 to fax and receive documents to and from end users connected through a communications link.

Because there generally are a plurality of remote ports 65 arranged for access to the system database, there are preferably a plurality of communications managers 133

12

and modems 131 to service requests from the remote ports. Likewise, although the database generally includes one fax manager 134 and one interface 132, a plurality of fax managers 134 and fax machine interfaces 132 can be incorporated therein. Accordingly, the host database can answer and service a variety of remote ports simultaneously.

The session manager 138 tracks and controls information for each active session being hosted by the database architecture. It responds to requests for data passed to it by each communications manager 133 operating in the database architecture, and prioritizes, queues, and forwards these data requests to the end user data server 136. The manager 138 also forwards data requests to the system data server 137 (FIG. 9 only) to log certain system information, such as user connection times, errors, system utilization, and other administrative functions.

In FIGS. 9 and 10, database storage memory 139 stores information which is accessible by the end user data server 136 and which is responsive to user requests, including the selected city, locations of items of interest, maps of geographic vacinities, and advertising information. In FIG. 10, an additional database storage memory 139a stores information which is accessible by the system data server 137 and which stores information such as system usage and transaction logging.

The end user data server 136 responds to requests from the session manager 138 by providing data that has been requested for transmission to the remote port. This data includes that information required to place items of interest on the selected geographic vicinity. Preferably, the end user data server 136 is the only mode of access to the specific map data, and thus all requests for this data are made through this server.

In FIG. 9, the system data server 137 interacts with the session manager 138 to record system administrative data. The server 137 responds to requests from the session manager 138 to provide or record information used to track system usage, system response times, user preferences, and other data items that are used to optimize the different modules within the architecture 130.

The flow and control of information by the information Communications managers 133, 133' (FIGS. 9 and 10, 45 controller 14, FIG. 1, can include several of the functions shown illustratively in FIG. 11. Specifically, a display manager 150 controls the drawing of maps (i.e., geographic vacinities) on the screen 22 and further controls status messages to a user of the system. The manager 150 responds to requests for screen updates and status message display from a system kernel module 159, described in more detail below. It also sends requests to a map manager 151 when rendering maps to the display, and sends requests to a data manager 152 in order to obtain system information required to update the display 22 or to present status messages to the

> A map manager 151 manages map data and provides data for drawing maps to the display manager 150. The manager 151 responds to requests from the display manager 150 by providing information appropriate to the current context of the session, such as the graphical image (e.g., the geographic vicinity and advertising information) that needs to be displayed, the locations on the screen 22 of the items of interest, and the location and content of the rifles of the items of interest.

> A data manager 152 handles all data requests from the system kernel module 159, map manager 151, and print